FaSD-somatic: a fast and accurate somatic SNV detection algorithm for cancer genome sequencing data

نویسندگان

  • Weixin Wang
  • Panwen Wang
  • Feng Xu
  • Ruibang Luo
  • Maria P. Wong
  • Tak Wah Lam
  • Junwen Wang
چکیده

UNLABELLED Recent advances in high-throughput sequencing technologies have enabled us to sequence large number of cancer samples to reveal novel insights into oncogenetic mechanisms. However, the presence of intratumoral heterogeneity, normal cell contamination and insufficient sequencing depth, together pose a challenge for detecting somatic mutations. Here we propose a fast and an accurate somatic single-nucleotide variations (SNVs) detection program, FaSD-somatic. The performance of FaSD-somatic is extensively assessed on various types of cancer against several state-of-the-art somatic SNV detection programs. Benchmarked by somatic SNVs from either existing databases or de novo higher-depth sequencing data, FaSD-somatic has the best overall performance. Furthermore, FaSD-somatic is efficient, it finishes somatic SNV calling within 14 h on 50X whole genome sequencing data in paired samples. AVAILABILITY AND IMPLEMENTATION The program, datasets and supplementary files are available at http://jjwanglab.org/FaSD-somatic/. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mutation Discovery in Regions of Segmental Cancer Genome Amplifications with CoNAn-SNV: A Mixture Model for Next Generation Sequencing of Tumors

Next generation sequencing has now enabled a cost-effective enumeration of the full mutational complement of a tumor genome-in particular single nucleotide variants (SNVs). Most current computational and statistical models for analyzing next generation sequencing data, however, do not account for cancer-specific biological properties, including somatic segmental copy number alterations (CNAs)-w...

متن کامل

A comparative analysis of algorithms for somatic SNV detection in cancer

MOTIVATION With the advent of relatively affordable high-throughput technologies, DNA sequencing of cancers is now common practice in cancer research projects and will be increasingly used in clinical practice to inform diagnosis and treatment. Somatic (cancer-only) single nucleotide variants (SNVs) are the simplest class of mutation, yet their identification in DNA sequencing data is confounde...

متن کامل

Feature-based classifiers for somatic mutation detection in tumour–normal paired sequencing data

MOTIVATION The study of cancer genomes now routinely involves using next-generation sequencing technology (NGS) to profile tumours for single nucleotide variant (SNV) somatic mutations. However, surprisingly few published bioinformatics methods exist for the specific purpose of identifying somatic mutations from NGS data and existing tools are often inaccurate, yielding intolerably high false p...

متن کامل

VarScan 2: somatic mutation and copy number alteration discovery in cancer by exome sequencing.

Cancer is a disease driven by genetic variation and mutation. Exome sequencing can be utilized for discovering these variants and mutations across hundreds of tumors. Here we present an analysis tool, VarScan 2, for the detection of somatic mutations and copy number alterations (CNAs) in exome data from tumor-normal pairs. Unlike most current approaches, our algorithm reads data from both sampl...

متن کامل

Inference of Tumor Phylogenies with Improved Somatic Mutation Discovery

Next-generation sequencing technologies provide a powerful tool for studying genome evolution during progression of advanced diseases such as cancer. Although many recent studies have employed new sequencing technologies to detect mutations across multiple, genetically related tumors, current methods do not exploit available phylogenetic information to improve the accuracy of their variant call...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Bioinformatics

دوره 30 17  شماره 

صفحات  -

تاریخ انتشار 2014